Inhaltsverzeichnis

Development of
Algorithmic Constructions

19:02:43
Deutsch
19.May 2019

29 31 33
√2 √3 √5 √6 √7 √8

Number p= Adjoined square root=

Calculation

A=√3
(a+bA)² = a²+b²A² + 2abA mod p
|(a+bA)| = (a+bA)(a-bA) = a²-b²A² mod p

Potence 2 Potence 3 Potence 5 Potence 7 Potence 11 Potence 13 Potence 17 Potence 19 Potence 23 Potence 29

Number = 31, Adjoined = √3, Exponent = 1, Jacobi (3, 31) = -1, 31 = 3 mod 4, 31 = 7 mod 8

30
030√3
Number of elements = 32

Number = 31, Adjoined = √3, Exponent = 1, Jacobi (3, 31) = -1, 31 = 3 mod 4, 31 = 7 mod 8

Potence 2 Potence 3 Potence 5 Potence 7 Potence 11 Potence 13 Potence 17 Potence 19 Potence 23 Potence 29

|27+4A|
=30
|27+27A|
=30
|26+9A|
=30
|26+22A|
=30
|25+8A|
=30
|25+23A|
=30
|23+1A|
=30
|23+30A|
=30
|20+12A|
=30
|20+19A|
=30
|19+10A|
=30
|19+21A|
=30
|18+6A|
=30
|18+25A|
=30
|17+13A|
=30
|17+18A|
=30
|14+13A|
=30
|14+18A|
=30
|13+6A|
=30
|13+25A|
=30
|12+10A|
=30
|12+21A|
=30
|11+12A|
=30
|11+19A|
=30
|8+1A|
=30
|8+30A|
=30
|6+8A|
=30
|6+23A|
=30
|5+9A|
=30
|5+22A|
=30
|4+4A|
=30
|4+27A|
=30