Inhaltsverzeichnis

Development of
Algorithmic Constructions

18:28:05
Deutsch
19.May 2019

29 31 33
√2 √3 √5 √6 √7 √8

Number p= Adjoined square root=

Calculation

A=√3
(a+bAI)² = a²-b²A² + 2abAI mod p
|(a+bAI)| = (a+bAI)(a-bAI) = a²+b²A² mod p

Potence 2 Potence 3 Potence 5 Potence 7 Potence 11 Potence 13 Potence 17 Potence 19 Potence 23 Potence 29

Number = 31, Adjoined = √3, Exponent = 1, Jacobi (3, 31) = -1, 31 = 3 mod 4, 31 = 7 mod 8

30
030√3
Number of elements = 30

Number = 31, Adjoined = √3, Exponent = 1, Jacobi (3, 31) = -1, 31 = 3 mod 4, 31 = 7 mod 8

Potence 2 Potence 3 Potence 5 Potence 7 Potence 11 Potence 13 Potence 17 Potence 19 Potence 23 Potence 29

|30+12AI|
=30
|30+19AI|
=30
|29+9AI|
=30
|29+22AI|
=30
|28+10AI|
=30
|28+21AI|
=30
|24+2AI|
=30
|24+29AI|
=30
|22+13AI|
=30
|22+18AI|
=30
|21+7AI|
=30
|21+24AI|
=30
|16+11AI|
=30
|16+20AI|
=30
|15+11AI|
=30
|15+20AI|
=30
|10+7AI|
=30
|10+24AI|
=30
|9+13AI|
=30
|9+18AI|
=30
|7+2AI|
=30
|7+29AI|
=30
|3+10AI|
=30
|3+21AI|
=30
|2+9AI|
=30
|2+22AI|
=30
|1+12AI|
=30
|1+19AI|
=30
|0+14AI|
=30
|0+17AI|
=30