Inhaltsverzeichnis

Development of
Algorithmic Constructions

18:27:30
Deutsch
19.May 2019

29 31 33
√2 √3 √5 √6 √7 √8

Number p= Adjoined square root=

Calculation

A=√3
(a+bA)² = a²+b²A² + 2abA mod p
|(a+bA)| = (a+bA)(a-bA) = a²-b²A² mod p

Potence 2 Potence 3 Potence 5 Potence 7 Potence 11 Potence 13 Potence 17 Potence 19 Potence 23 Potence 29

Number = 31, Adjoined = √3, Exponent = 1, Jacobi (3, 31) = -1, 31 = 3 mod 4, 31 = 7 mod 8

30
030√3
Number of elements = 32

Number = 31, Adjoined = √3, Exponent = 1, Jacobi (3, 31) = -1, 31 = 3 mod 4, 31 = 7 mod 8

Potence 2 Potence 3 Potence 5 Potence 7 Potence 11 Potence 13 Potence 17 Potence 19 Potence 23 Potence 29

|30+0A|
=1
|29+1A|
=1
|29+30A|
=1
|27+6A|
=1
|27+25A|
=1
|26+15A|
=1
|26+16A|
=1
|24+4A|
=1
|24+27A|
=1
|21+8A|
=1
|21+23A|
=1
|20+3A|
=1
|20+28A|
=1
|18+5A|
=1
|18+26A|
=1
|13+5A|
=1
|13+26A|
=1
|11+3A|
=1
|11+28A|
=1
|10+8A|
=1
|10+23A|
=1
|7+4A|
=1
|7+27A|
=1
|5+15A|
=1
|5+16A|
=1
|4+6A|
=1
|4+25A|
=1
|2+1A|
=1
|2+30A|
=1
|1+0A|
=1
|0+14A|
=1
|0+17A|
=1