Inhaltsverzeichnis

Development of
Algorithmic Constructions

18:27:17
Deutsch
19.May 2019

29 31 33
√2 √3 √5 √6 √7 √8

Number p= Adjoined square root=

Calculation

A=√3
(a+bAI)² = a²-b²A² + 2abAI mod p
|(a+bAI)| = (a+bAI)(a-bAI) = a²+b²A² mod p

Potence 2 Potence 3 Potence 5 Potence 7 Potence 11 Potence 13 Potence 17 Potence 19 Potence 23 Potence 29

Number = 31, Adjoined = √3, Exponent = 1, Jacobi (3, 31) = -1, 31 = 3 mod 4, 31 = 7 mod 8

30
030√3
Number of elements = 61

Number = 31, Adjoined = √3, Exponent = 1, Jacobi (3, 31) = -1, 31 = 3 mod 4, 31 = 7 mod 8

Potence 2 Potence 3 Potence 5 Potence 7 Potence 11 Potence 13 Potence 17 Potence 19 Potence 23 Potence 29

|30+14AI|
=0
|30+17AI|
=0
|29+3AI|
=0
|29+28AI|
=0
|28+11AI|
=0
|28+20AI|
=0
|27+6AI|
=0
|27+25AI|
=0
|26+8AI|
=0
|26+23AI|
=0
|25+9AI|
=0
|25+22AI|
=0
|24+5AI|
=0
|24+26AI|
=0
|23+12AI|
=0
|23+19AI|
=0
|22+2AI|
=0
|22+29AI|
=0
|21+15AI|
=0
|21+16AI|
=0
|20+1AI|
=0
|20+30AI|
=0
|19+13AI|
=0
|19+18AI|
=0
|18+4AI|
=0
|18+27AI|
=0
|17+10AI|
=0
|17+21AI|
=0
|16+7AI|
=0
|16+24AI|
=0
|15+7AI|
=0
|15+24AI|
=0
|14+10AI|
=0
|14+21AI|
=0
|13+4AI|
=0
|13+27AI|
=0
|12+13AI|
=0
|12+18AI|
=0
|11+1AI|
=0
|11+30AI|
=0
|10+15AI|
=0
|10+16AI|
=0
|9+2AI|
=0
|9+29AI|
=0
|8+12AI|
=0
|8+19AI|
=0
|7+5AI|
=0
|7+26AI|
=0
|6+9AI|
=0
|6+22AI|
=0
|5+8AI|
=0
|5+23AI|
=0
|4+6AI|
=0
|4+25AI|
=0
|3+11AI|
=0
|3+20AI|
=0
|2+3AI|
=0
|2+28AI|
=0
|1+14AI|
=0
|1+17AI|
=0
|0+0AI|
=0