 |
Development of Algorithmic Constructions |
08:16:39
|  | | 25.Sep 2023
|
|
Prime sieving for the polynomial f(n)=2n2-1
0. Abstract
1. Mathematical theory
2. Description of the basic algorithm
3. Programming and algorithms
a) Programing of the basic algorithm
b) Improved programming
c) Improved programming for speed with Hensel-lifting I
d) Improved programming for speed with Hensel-lifting II
e) Programming in the complex field
f) Used programm for the investigation in C with Heap
4. Results of the distribution of the primes
a) Table up to 1012 and table up to 240
b) Graphic of the distribution of the primes
c) Graphic of the proportion between the "reducible" and the "big" primes
d) Table of the distribution of the primes mod 6 and mod 8
e) Primes which could not be a factor of any Mersenne number
f) Graphic of the distribution of the sieved out primes
5. Runtime of the algorithm
a) Table of the amount of divisions
b) Estimation of the runtime
6. Sequences of primes and reference to Njas-Sequences
a) Primes of the form 2*n2 - 1
b) Numbers n such that 2*n2 - 1 is a prime
c) Primitive prime factors of the sequence 2k2 - 1 in the order that they are found
d) a(n)= Number of distinct prime divisors (taken together) of numbers of the form 2n2-1 for n<=10n
e) Mersenne numbers: 2p - 1, where p is prime
f) infinite sequence of primes concerning the polynom f(n)=2n2-1 with 1
g) infinite sequence of primes concerning the polynom f(n)=2n2-1 with the factorisation in the field with adjoined square root
7. Links
Mersenne - GIMPS Home
Mersenne prime numbers - Wikipedia
Mersenne prime numbers - Wolfram Mathworld
Mersenne Primes: History, Theorems and Lists - Chris K. Caldwell
0. Abstract:
Mersenne numbers and the polynomial f(n)=2n2-1
Similar to the quadratic polynomial f(n)=n2+1 there are listed some algorithms
how to sieve the irreducible primes f(n)=2n2-1 and the reducible primes with r | 2n2-1 and r<2n2-1.
There is an interesting connection between this polynomial and the Mersenne numbers especially the Mersenne prime numbers,
as all Mersenne numbers 2p-1 are elements of f(n)=2n2-1. proof
Also that means that at least one factor g of Mersenne numbers Mp can be found by that sieving procedure with g | f(n) and n < 2^[(p-1)/2] where p is from Mp.
Besides as all primes of f(n) = 2n2-1 are kind of p = 1 or 7 mod 8, proof
all possible factors of Mersenne numbers are kind of p = 1 or 7 mod 8.
That means that primes such as p = 3 or 5 mod 8 could not be a factor of Mersenne Numbers.
Therefore the sieving of the polynomial f(n)=2n2-1 explains the distribution of Mersenne numbers:
Mersenne prime numbers are irreducible primes, which are not sieved out by a prime, which appears in the polynomial before.
The question if there are infinite primes of the form f(n)=2n2-1 or infinite Mersenne prime is not answered,
but nevertheless by finding the 51th known Mersenne prime 282,589,933 -1 on 7th, december, 2018 the limit is increased.
1. Mathematical theory
Let f(n) = 2n2-1 with n element of N
The following lemmas explain the mathematical background which is used for the described algorithms.
a) All Mersenne Numbers 2p-1 with p element P are elements of f(n)=2n2-1.
Proof: 2p-1 = 2*2(p-1) - 1 with n2=2^(p-1) respectively n = 2(p-1)/2
<=> 2n2-1 = f(n)
b) Lemma: If p | f(n) then also p | f(n+p)
p | f(n) <=> 2n2 - 1 = 0 mod p
p | f(n+p) <=> 2(n+p)2 - 1 = 0 mod p
<=> 2n2 + 4np + 2p2 - 1 = 0 mod p
<=> 2n2 - 1 = 0 mod p
Thus if p | f(n) then p | f(n+p)
c) Lemma: If p | f(n) then also p | f(-n)
p | f(n) <=> 2n2 - 1 = 0 mod p
p | f(-n) <=> 2(-n)2 - 1 = 0 mod p
<=> 2n2 - 1 = 0 mod p
Thus if p | f(n) then p | f(-n)
d) Lemma: If p | f(-n) then also p | f(-n+p)
This is a simple conclusion of b) and c) and means that
if p is a divisor of f(n) then p appears periodically concerning the function values of f(n)=2n2-1
at f(n) and f(-n) with the period length p
e) Lemma: All primes (without the 2) appear as factor on the three polynoms: f(n)=4n2+1, f(n)=2n2+1, f(n)=2n2-1.
Proof: Let p be a prime, p>2
Then there is some n element of N and some {f, g, h} such that p divides t(n)
Assume first that p = 4k+1 for some k element N
Then -1 is a square in Fp* and hence there is some a element Fp* such that
a2= -1.
Put n´:=2(-1)a element Fp and choose some n element N such that n´= n mod p
then 4n2 = 4n´^2 = 4*2(-2)a2 = a2 = -1 mod p.
Hence p divides h (n) = 4n2+1
The remaining primes are of the form 8k+3 or 8k-1.
Assume that p = 8k+3 for some k element N
Then -2 is a square in Fp and so is -1/2.
So there is n element N such that n2 = -1/2 mod p
Hence p divides g(n) = 2n2+1.
Assume finally that p = 8k-1
Then 2 is a square in Fp and so is 1/2.
So there is n element N such that n2 = 1/2 mod p
Hence p divides f(n) = 2n2-1.
alternativ proof:
discriminant of f(m)=4m2+1 is equal -1.
discriminant of f(n)=2n2+1 is equal -2
discriminant of f(o)=2o2-1 is equal 2
Therefore discr [f(m)]*discr [f(n)]=discr [f(o)]
2. Description of the basic algorithm
For a more detailed description see the description of the polynom f(n)=n2+1
a) Create a list from n=2 to n=list_max=100 with f(n)=2n2-1
f(2)= 7
f(3)= 17
f(4)= 31
f(5)= 49 = 72
f(6)= 71
f(7)= 97
f(8)= 127
f(9)= 161 = 7*23
f(10)= 199
f(11)= 241
f(12)= 287 = 7*41
f(13)= 337
f(14)= 391 = 17*23
f(15)= 449
f(16)= 511 = 7*73
f(17)= 577
f(18)= 647
f(19)= 721 = 7*103
f(20)= 799 = 17*47
f(21)= 881
f(22)= 967
f(23)= 1057 = 7*151
f(24)= 1151
f(25)= 1249
f(26)= 1351 = 7*193
f(27)= 1457 = 31*47
f(28)= 1567
f(29)= 1681 = 412
f(30)= 1799 = 7*257
f(31)= 1921 = 17*113
f(32)= 2047 = 23*89
f(33)= 2177 = 7*311
f(34)= 2311
f(35)= 2449 = 31*79
f(36)= 2591
f(37)= 2737 = 7*17*23
f(38)= 2887
f(39)= 3041
f(40)= 3199 = 7*457
f(41)= 3361
f(42)= 3527
f(43)= 3697
f(44)= 3871 = 72*79
f(45)= 4049
f(46)= 4231
f(47)= 4417 = 7*631
f(48)= 4607 = 17*271
f(49)= 4801
f(50)= 4999
f(51)= 5201 = 7*743
f(52)= 5407
f(53)= 5617 = 41*137
f(54)= 5831 = 73*17
f(55)= 6049 = 23*263
f(56)= 6271
f(57)= 6497 = 73*89
f(58)= 6727 = 7 312
f(59)= 6961
f(60)= 7199 = 23*313
f(61)= 7441 = 7*1063
f(62)= 7687
f(63)= 7937
f(64)= 8191
f(65)= 8449 = 7*17*71
f(66)= 8711 = 31*281
f(67)= 8977 = 47*191
f(68)= 9247 = 7*1321
f(69)= 9521
f(70)= 9799 = 41*239
f(71)= 10081 = 17*593
f(72)= 10367 = 7*1481
f(73)= 10657
f(74)= 10951 = 47*233
f(75)= 11249 = 7*1607
f(76)= 11551
f(77)= 11857 = 71*167
f(78)= 12167 = 233
f(79)= 12481 = 7*1783
f(80)= 12799
f(81)= 13121
f(82)= 13447 = 7*17*113
f(83)= 13777 = 23*599
f(84)= 14111 = 103*137
f(85)= 14449
f(86)= 14791 = 7*2113
f(87)= 15137
f(88)= 15487 = 17*911
f(89)= 15841 = 7*31*73
f(90)= 16199 = 97*167
f(91)= 16561
f(92)= 16927
f(93)= 17297 = 72*353
f(94)= 17671 = 41*431
f(95)= 18049
f(96)= 18431 = 7*2633
f(97)= 18817 = 31*607
f(98)= 19207
f(99)= 19601 = 17*1153
f(100)= 19999 = 7*2857
(1 added the factorization of the results, because it shows the periodical appearance of the primes.)
b) f(2)=7,
divide f(2+k*7) / 7 as often as there is no factor 7 in the result. k element N, 2+k*7<=Liste_max
You have to divide f(9), f(16), f(23), f(30), f(37), f(44), f(51), f(58), f(65), f(72), f(79), f(86), f(93) and f(100) by 7.
divide f(-2+k*7) / 7 as often as there is no factor 7 in the result.k element N, k*7-2<=Liste_max
You have to divide f(5), f(12), f(19), f(26), f(33), f(40), f(47), f(54), f(61), f(68), f(75), f(82), f(89), f(96) on by 7.
(The factor 7 appears two times f(5)=7*7, you have to make two divisions.)
c) f(3)=17,
divide f(3+k*17) / 17 as often as there is no factor 17 in the result. k element N, 3+k*17<=Liste_max
You have to divide f(20), f(37), f(54), f(71), f(88) by 17.
divide f(-3+k*17) / 17 as often as there is no factor 17 in the result.k element N, k*17-3<=Liste_max
You have to divide f(14), f(31), f(48), f(65), f(82), f(99) by 17.
d) Go for n from 4 to liste_max
if f´(x) > 1
divide f(n+k*f´(n)) / f´(n) and
divide f(-n+k*f´(n)) / f´(n)
as often as there is no factor f´(n) in the result.
f´(n) is the prime which remains after dividing by f(1), f´(2) up to f´(n-1)
You get an unsorted list of primes.
3. a) Programing of the basic algorithm
This is a short implementation for the algorithm concerning the polynom f(n)=2n2-1.
Every prime which occurs is sieved out resp. divides periodically at two positions the initialised list.
The procedure sieving only divides as often as possible the function values in the list by the sieving primes.
- // numbers of the examined list
liste_max:=1000;
// number of primes which have to store
anz_store:=0;
// number of divisions which are made
anz_div:=0;
// number of primes which are found.
anz_prim:=0;
siebung:=proc (s, p)
begin
if (s+p<liste_max) then
anz_store:=anz_store+1;
end_if;
while (s<liste_max) do
repeat
liste [s]:=liste[s] /p;
anz_div:=anz_div+1;
until (liste[s] mod p > 0) end_repeat;
s:=s+p;
end_while;
end_proc;
for x from 1 to liste_max - 1 do
liste [x]:=2*x2-1;
end_for;
for x from 1 to liste_max -1 do
p:=liste[x];
print (x, p);
if (p>1) then
anz_prim:=anz_prim+1;
siebung (x+p, p);
siebung (p-x, p);
end_if;
end_for;
print (liste_max, anz_prim, anz_store, anz_div);
You get as result an unsorted list of primes.
Runtime
Runtime of the algorithm is O (n)
x |
Number of divisions |
Quotient |
10 |
10 |
|
100 |
161 |
161 / 10 = 16.10 |
103 |
1.969 |
1.969 / 161 = 12.23 |
104 |
22.401 |
22.401 / 1.969 = 11.38 |
105 |
245.036 |
245.036 / 22.401 = 10.94 |
106 |
2.624.860 |
2.624.860 / 245.036 = 10.71 |
107 |
27.732.987 |
27.732.987 / 2.624.860= 10.57 |
108 |
290.244.956 |
290.244.956 / 27.732.987 = 10.47 |
109 |
3.016.887.643 |
3.016.887.643 / 290.244.956 = 10.39 |
Memory consumption
x |
stored Primes |
Quotient |
10 |
1 |
|
100 |
14 |
|
103 |
114 |
114 / 14 = 8.14 |
104 |
882 |
882 / 114 = 7.74 |
105 |
6.845 |
6.845 / 882 = 7.76 |
106 |
55.870 |
55.870 / 6.845 = 8.16 |
107 |
471.493 |
471.493 / 55.870 = 8.44 |
108 |
4.075.075 |
4.075.075 / 471.493 = 8.64 |
109 |
35.883.124 |
35.883.124 / 4.075.075 = 8.81 |
3. b) Improved programming for speed
The main loop for x from 1 to liste_max is divided into two loops with the same huge.
In the second loop only the second sieving part is made
because the first sieving part is redundant, as the prime p=f(x) > x
- liste_max:=1000000;
anz:=0;
siebung:=proc (stelle, p)
begin
while (stelle<=liste_max) do
erg:=liste[stelle];
repeat
erg:=erg /p;
until (erg mod p>0) end_repeat;
liste[stelle]:=erg;
stelle:=stelle+p;
end_while;
end_proc;
for x from 1 to liste_max do
liste [x]:=2*x2-1;
end_for;
for x from 1 to round (liste_max/2) do
p:=liste[x];
if (p>1) then
anz:=anz+1:
siebung (x+p, p);
siebung (p-x, p);
end_if;
end_for;
for x from round (liste_max/2)+1 to liste_max do
p:=liste[x];
if (p>1) then
anz:=anz+1:
siebung (p-x, p);
end_if;
end_for;
print (anz);
3. c) Improved programming with Hensel-lifting I
The Hensel-lifting explains for which n and f´(n)=p
f(n) | p2, f(n) | p3, f(n) | p4 and so on.
Only one division instead of two are needed.
- liste_max:=1000;
anz_prim:=0;
anz_hensel:=0;
f:=proc (x)
begin
return (2*x2-1);
end;
fd:=proc (x)
begin
return (4*x);
end;
siebung:=proc (s, p, a)
begin
while (s<=liste_max) do
liste[s]:=liste[s]/p;
s:=s+a;
end_while;
end_proc;
hensel:=proc (s, p)
begin
a:=p;
siebung (s, p, p);
inv:=fd(s)^(-1) mod p;
repeat
anz_hensel:=anz_hensel+1;
a:=a*p;
s:=s-f(s)*inv;
s:=s mod a;
siebung (s, p, a);
until s>liste_max end_repeat;
end_proc;
for x from 1 to liste_max-1 do
liste [x]:=f (x);
end_for;
for x from 1 to liste_max-1 do
p:=liste[x];
// print (x, p);
if (p>1) then
anz_prim:=anz_prim+1;
s:=x+p;
if (s<liste_max) then
hensel (s, p);
end_if;
s:=p-x;
if (s<liste_max) then
hensel (s, p);
end_if;
end_if;
end_for;
print ("Anzahl Prime = ", anz_prim, " Anzahl Hensel = ", anz_hensel);
Results
x |
number of Hensel-lifting |
Factor |
10 |
3 |
|
100 |
30 |
|
103 |
190 |
190 / 30 = 6.33 |
104 |
1.372 |
1.372 / 190 = 7.22 |
105 |
10.468 |
10.468 / 1.372 = 7.63 |
106 |
85.556 |
85.556 / 10.468 = 8.17 |
107 |
724.425 |
724.425 / 85.556 = 8.47 |
108 |
6.280.838 |
6.280.838 / 724.425 = 8.67 |
109 |
55.472.028 |
55.472.028 / 6.280.838 = 8.83 |
3. d) Improved programming with Hensel-lifting II
Only one calculation of the Hensel-lifting is made instead of two for one prime.
- anz_hensel:=0;
anz_prim:=0;
liste_max:=1000;
f:=proc (x)
begin
return (2*x2-1);
end;
fd:=proc (x)
begin
return (4*x);
end;
siebung:=proc (s, p, a)
begin
while (s<liste_max) do
liste[s]:=liste[s]/p;
s:=s+a;
end_while;
end_proc;
hensel:=proc (x, p)
begin
siebung (x+p, p, p);
siebung (p-x, p, p);
s:=x;
a:=p;
inv:=fd(s)^(-1) mod p;
repeat
anz_hensel:=anz_hensel+1;
a:=a*p;
s:=s-f(s)*inv;
s:=s mod a;
siebung (s, p, a);
siebung (a-s, p, a);
until a-s>liste_max end_repeat;
end_proc;
for x from 1 to liste_max-1 do
liste [x]:=f (x);
end_for;
for x from 2 to liste_max-1 do
p:=liste[x];
// print (x, p);
if (p>1) then
anz_prim:=anz_prim+1;
if (p-x<liste_max) then
hensel (x, p);
end_if;
end_if;
end_for;
print ("Anzahl = ", anz,"Anzahl Hensel = ", anz_hensel);
Results
x |
number of Hensel-lifting |
Factor |
10 |
1 |
|
100 |
18 |
|
103 |
114 |
= 6.33 |
104 |
845 |
= 7.22 |
105 |
6.438 |
= 7.63 |
106 |
53.079 |
= 8.24 |
107 |
450.773 |
= 8.49 |
108 |
3.916.264 |
= 8.69 |
109 |
34.636.140 |
= 8.84 |
3. e) Programming in the field of adjoined square root
f(x)=2x2-1 = [ √2x + 1 ] * [ √2x - 1 ]
This algorithm is interesting from the mathematical point of view and the additional results.
The sieving is not made in N but in the field of adjoined square root.
- liste_max:=1000;
siebung:=proc (stelle, x, p, liste)
begin
dr:=r[x];
if liste=1 then
di:=i[x];
else
di:=-i[x];
end_if;
d:=dr2-di2;
while stelle<=liste_max do
rl:=r[stelle];
il:=i[stelle];
while TRUE do
a:=(rl*dr-il*di)/d;
b:=(il*dr-rl*di)/d;
if (is (a, Type::Integer)=TRUE or is (b, Type::Integer)=TRUE) then
rl:=a;
il:=b;
else
break;
end_if;
end_while;
r[stelle]:=rl;
i[stelle]:=il;
stelle:=stelle+p;
end_while;
end_proc;
for x from 1 to liste_max-1 do
r[x]:=2^(1/2)*x;
i[x]:=1;
end_for;
for x from 1 to liste_max-1 do
p:=r[x]^2-i[x]^2;
if p>1 then
print (x, p, r[x], i[x]);
siebung (x+p, x, p, 1);
siebung (p-x, x, p, 2);
end_if;
end_for;
You get as result the factorisation of the primes in the field of adjoined square root.
4. a) Results of the distribution of the primes
Legend of the tables:
Column A = exponent concerning base 10 resp. base 2
Column B = is the interval [0,x]
Column C = all primes, irreducible and reducible primes resp. D+E,
Column D = irreducible primes of the form f(x)=2x2-1
Column E = reducible primes with p | 2x2-1 and p < 2x2-1, counted by the first appearance resp. for the smallest x.
The numbers in the rows F-K are rounded with 6 digits after the decimal point.
A | B | C | D | E | F | G | H | I | J | K | | 10^n | x | all Primes | P(x)=2x^2-1 | P(x) | 2x^2-1 | C/B | D/B | E/B | C(n) / C(n-1) | D(n) / D(n-1) | E(n) / E(n-1) | | 1 | 10 | 8 | 7 | 1 | 0,800000 | 0,700000 | 0,100000 | | | | | 2 | 100 | 84 | 45 | 39 | 0,840000 | 0,450000 | 0,390000 | 10,500000 | 6,428571 | 39,000000 | | 3 | 1.000 | 815 | 303 | 512 | 0,815000 | 0,303000 | 0,512000 | 9,702381 | 6,733333 | 13,128205 | | 4 | 10.000 | 7.922 | 2.202 | 5.720 | 0,792200 | 0,220200 | 0,572000 | 9,720245 | 7,267327 | 11,171875 | | 5 | 100.000 | 77.250 | 17.185 | 60.065 | 0,772500 | 0,171850 | 0,600650 | 9,751325 | 7,804269 | 10,500874 | | 6 | 1.000.000 | 759.077 | 141.444 | 617.633 | 0,759077 | 0,141444 | 0,617633 | 9,826239 | 8,230666 | 10,282744 | | 7 | 10.000.000 | 7.492.588 | 1.200.975 | 6.291.613 | 0,749259 | 0,120098 | 0,629161 | 9,870656 | 8,490816 | 10,186653 | | 8 | 100.000.000 | 74.198.995 | 10.448.345 | 63.750.650 | 0,741990 | 0,104483 | 0,637507 | 9,902986 | 8,699886 | 10,132640 | | 9 | 1.000.000.000 | 736.401.956 | 92.435.171 | 643.966.785 | 0,736402 | 0,092435 | 0,643967 | 9,924689 | 8,846872 | 10,101337 | | 10 | 10.000.000.000 | 7.319.543.972 | 828.797.351 | 6.490.746.621 | 0,731954 | 0,082880 | 0,649075 | 9,939604 | 8,966255 | 10,079319 | | 11 | 100.000.000.000 | 72.834.161.468 | 7.511.268.020 | 65.322.893.448 | 0,728342 | 0,075113 | 0,653229 | 9,950642 | 9,062852 | 10,064003 | | 12 | 1.000.000.000.000 | 725.344.237.597 | 68.680.339.342 | 656.663.898.255 | 0,725344 | 0,068680 | 0,656664 | 9,958847 | 9,143641 | 10,052584 | | | | | | | | | | | | | | | | | | | | | | | | | | A | B | C | D | E | F | G | H | I | J | K | | 2^n | x | all Primes | P(x)=2x^2-1 | P(x) | 2x^2-1 | C/B | D/B | E/B | C(n) / C(n-1) | D(n) / D(n-1) | E(n) / E(n-1) | | 1 | 2 | 1 | 1 | 0 | 0,500000 | 0,500000 | 0,000000 | | | | | 2 | 4 | 3 | 3 | 0 | 0,750000 | 0,750000 | 0,000000 | 3,000000 | 3,000000 | | | 3 | 8 | 6 | 6 | 0 | 0,750000 | 0,750000 | 0,000000 | 2,000000 | 2,000000 | #DIV/0! | | 4 | 16 | 13 | 10 | 3 | 0,812500 | 0,625000 | 0,187500 | 2,166667 | 1,666667 | #DIV/0! | | 5 | 32 | 27 | 17 | 10 | 0,843750 | 0,531250 | 0,312500 | 2,076923 | 1,700000 | 3,333333 | | 6 | 64 | 54 | 34 | 20 | 0,843750 | 0,531250 | 0,312500 | 2,000000 | 2,000000 | 2,000000 | | 7 | 128 | 106 | 55 | 51 | 0,828125 | 0,429688 | 0,398438 | 1,962963 | 1,617647 | 2,550000 | | 8 | 256 | 212 | 99 | 113 | 0,828125 | 0,386719 | 0,441406 | 2,000000 | 1,800000 | 2,215686 | | 9 | 512 | 420 | 178 | 242 | 0,820313 | 0,347656 | 0,472656 | 1,981132 | 1,797980 | 2,141593 | | 10 | 1.024 | 835 | 309 | 526 | 0,815430 | 0,301758 | 0,513672 | 1,988095 | 1,735955 | 2,173554 | | 11 | 2.048 | 1.656 | 545 | 1.111 | 0,808594 | 0,266113 | 0,542480 | 1,983234 | 1,763754 | 2,112167 | | 12 | 4.096 | 3.295 | 1.002 | 2.293 | 0,804443 | 0,244629 | 0,559814 | 1,989734 | 1,838532 | 2,063906 | | 13 | 8.192 | 6.512 | 1.838 | 4.674 | 0,794922 | 0,224365 | 0,570557 | 1,976328 | 1,834331 | 2,038378 | | 14 | 16.384 | 12.889 | 3.376 | 9.513 | 0,786682 | 0,206055 | 0,580627 | 1,979269 | 1,836779 | 2,035302 | | 15 | 32.768 | 25.587 | 6.294 | 19.293 | 0,780853 | 0,192078 | 0,588776 | 1,985181 | 1,864336 | 2,028067 | | 16 | 65.536 | 50.829 | 11.743 | 39.086 | 0,775589 | 0,179184 | 0,596405 | 1,986517 | 1,865745 | 2,025916 | | 17 | 131.072 | 101.018 | 21.965 | 79.053 | 0,770706 | 0,167580 | 0,603127 | 1,987409 | 1,870476 | 2,022540 | | 18 | 262.144 | 200.903 | 41.386 | 159.517 | 0,766384 | 0,157875 | 0,608509 | 1,988784 | 1,884179 | 2,017849 | | 19 | 524.288 | 399.532 | 78.131 | 321.401 | 0,762047 | 0,149023 | 0,613024 | 1,988681 | 1,887861 | 2,014839 | | 20 | 1.048.576 | 795.725 | 147.640 | 648.085 | 0,758862 | 0,140800 | 0,618062 | 1,991643 | 1,889647 | 2,016437 | | 21 | 2.097.152 | 1.584.289 | 280.678 | 1.303.611 | 0,755448 | 0,133838 | 0,621610 | 1,991001 | 1,901097 | 2,011482 | | 22 | 4.194.304 | 3.156.024 | 534.268 | 2.621.756 | 0,752455 | 0,127379 | 0,625075 | 1,992076 | 1,903491 | 2,011149 | | 23 | 8.388.608 | 6.290.171 | 1.019.557 | 5.270.614 | 0,749847 | 0,121541 | 0,628306 | 1,993068 | 1,908325 | 2,010337 | | 24 | 16.777.216 | 12.540.349 | 1.948.488 | 10.591.861 | 0,747463 | 0,116139 | 0,631324 | 1,993642 | 1,911112 | 2,009607 | | 25 | 33.554.432 | 25.004.583 | 3.737.250 | 21.267.333 | 0,745195 | 0,111379 | 0,633816 | 1,993930 | 1,918026 | 2,007894 | | 26 | 67.108.864 | 49.869.735 | 7.174.585 | 42.695.150 | 0,743117 | 0,106910 | 0,636207 | 1,994424 | 1,919750 | 2,007546 | | 27 | 134.217.728 | 99.481.971 | 13.795.167 | 85.686.804 | 0,741198 | 0,102782 | 0,638416 | 1,994837 | 1,922783 | 2,006945 | | 28 | 268.435.456 | 198.492.861 | 26.560.180 | 171.932.681 | 0,739444 | 0,098944 | 0,640499 | 1,995265 | 1,925325 | 2,006525 | | 29 | 536.870.912 | 396.098.536 | 51.221.836 | 344.876.700 | 0,737791 | 0,095408 | 0,642383 | 1,995530 | 1,928520 | 2,005882 | | 30 | 1.073.741.824 | 790.540.524 | 98.900.070 | 691.640.454 | 0,736248 | 0,092108 | 0,644140 | 1,995818 | 1,930819 | 2,005472 | | 31 | 2.147.483.648 | 1.578.008.402 | 191.194.071 | 1.386.814.331 | 0,734817 | 0,089032 | 0,645786 | 1,996113 | 1,933205 | 2,005109 | | 32 | 4.294.967.296 | 3.150.256.547 | 370.016.238 | 2.780.240.309 | 0,733476 | 0,086151 | 0,647325 | 1,996350 | 1,935291 | 2,004768 | | 33 | 8.589.934.592 | 6.289.736.836 | 716.818.946 | 5.572.917.890 | 0,732222 | 0,083449 | 0,648773 | 1,996579 | 1,937263 | 2,004473 | | 34 | 17.179.869.184 | 12.559.184.251 | 1.390.087.477 | 11.169.096.774 | 0,731041 | 0,080914 | 0,650127 | 1,996774 | 1,939245 | 2,004174 | | 35 | 34.359.738.368 | 25.080.235.460 | 2.698.149.317 | 22.382.086.143 | 0,729931 | 0,078526 | 0,651404 | 1,996964 | 1,940992 | 2,003930 | | 36 | 68.719.476.736 | 50.088.477.866 | 5.241.732.604 | 44.846.745.262 | 0,728883 | 0,076277 | 0,652606 | 1,997129 | 1,942714 | 2,003689 | | 37 | 137.438.953.472 | 100.041.078.738 | 10.191.540.564 | 89.849.538.174 | 0,727895 | 0,074153 | 0,653741 | 1,997287 | 1,944308 | 2,003480 | | 38 | 274.877.906.944 | 199.824.969.996 | 19.831.109.798 | 179.993.860.198 | 0,726959 | 0,072145 | 0,654814 | 1,997429 | 1,945840 | 2,003281 | | 39 | 549.755.813.888 | 399.162.730.752 | 38.616.670.706 | 360.546.060.046 | 0,726073 | 0,070243 | 0,655829 | 1,997562 | 1,947277 | 2,003102 | | 40 | 1.099.511.627.776 | 797.400.601.203 | 75.249.390.723 | 722.151.210.480 | 0,725232 | 0,068439 | 0,656793 | 1,997683 | 1,948625 | 2,002937 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|