Inhaltsverzeichnis

Development of
Algorithmic Constructions

14:27:56
Deutsch
24.Jun 2024

A triple system of positiv discriminants

Calculation of the positiv discriminants of the quadratic irreducible polynomials of

f(n)=nē+bn+c

for -400 < b < 400 and 1 < c < 1000
Discriminant of f(n) = bē-4c = p1 * p2; p1, p2 primes
All discriminants are divided by 4 as often as possible.
If two polynomials have the same discriminant, the polynomial f(n)=nē+bn+c with |b1| < |b2| is choosen.
Only polynomials were choosen which contain an infinitiv number of primes by a certain alogorithm.
The algorithm is described in detail for f(n)=nē+1 and f(n)=nē+n+1.

Nr. discr. bē -4c polynomial primes
1.6 = 2 * 3nē+2n-53519232943475367717397101139149
2nē-2717233141477173798997103113127137
3nē-331113233747596171738397107109131
Nr. discr. bē -4c polynomial primes
2.10 = 2 * 5nē+6n-1351331374143536771798389107
2nē-2717233141477173798997103113127137
5nē-5511192931415961717989101109131139149
Nr. discr. bē -4c polynomial primes
3.14 = 2 * 7nē+2n-135711133143476167101103107113137
2nē-2717233141477173798997103113127137
7nē-7371929313747535983103109113131137139149
Nr. discr. bē -4c polynomial primes
4.15 = 3 * 5nē+4n-113571117435359616771103109113127131137
3nē-331113233747596171738397107109131
5nē-5511192931415961717989101109131139149
Nr. discr. bē -4c polynomial primes
5.21 = 3 * 7nē+n-535717374143475967798389101109127131
3nē-331113233747596171738397107109131
7nē-7371929313747535983103109113131137139149
Nr. discr. bē -4c polynomial primes
6.22 = 2 * 11nē+6n-1337111329596167798997101109113127137149
2nē-2717233141477173798997103113127137
11nē-1157111937435379838997107113127131137139
Nr. discr. bē -4c polynomial primes
7.26 = 2 * 13nē+6n-17511131719233759677983103109113127149
2nē-2717233141477173798997103113127137
13nē-1331317232943536179101103107113127131139
Nr. discr. bē -4c polynomial primes
8.33 = 3 * 11nē+4n-293111729313741678397101103107131149
3nē-331113233747596171738397107109131
11nē-1157111937435379838997107113127131137139
Nr. discr. bē -4c polynomial primes
9.35 = 5 * 7nē+4n-31571317192329314359677397107109127131139149
5nē-5511192931415961717989101109131139149
7nē-7371929313747535983103109113131137139149
Nr. discr. bē -4c polynomial primes
10.38 = 2 * 19nē+2n-3711131719293137435371737983103109127131137139
2nē-2717233141477173798997103113127137
19nē+8n-335171931596167717379101103107127137149
Nr. discr. bē -4c polynomial primes
11.39 = 3 * 13nē+8n-233571319233141616789107131137149
3nē-331113233747596171738397107109131
13nē-1331317232943536179101103107113127131139
Nr. discr. bē -4c polynomial primes
12.46 = 2 * 23nē-14n+33572337415359617379103109131139149
2nē-2717233141477173798997103113127137
23nē-2371113192329414367737983101103107
Nr. discr. bē -4c polynomial primes
13.55 = 5 * 11nē+12n-193511131719234767737989103131139
5nē-5511192931415961717989101109131139149
11nē-1157111937435379838997107113127131137139
Nr. discr. bē -4c polynomial primes
14.57 = 3 * 19nē+4n-533719294143535961717389107113139
3nē-331113233747596171738397107109131
19nē+8n-335171931596167717379101103107127137149
Nr. discr. bē -4c polynomial primes
15.58 = 2 * 29nē-18n+23371119232937436171101103131
2nē-2717233141477173798997103113127137
29nē+n-7571323295359677183103107109139149
Nr. discr. bē -4c polynomial primes
16.62 = 2 * 31nē+2n-6113192329313741535961677997107113127131
2nē-2717233141477173798997103113127137
31nē-12n+5351123314143798397101109113127139149
Nr. discr. bē -4c polynomial primes
17.65 = 5 * 13nē+4n-615713293747616773798397101131137139
5nē-5511192931415961717989101109131139149
13nē-1331317232943536179101103107113127131139
Nr. discr. bē -4c polynomial primes
18.69 = 3 * 23nē+5n-1135111317233153738389107113127137139149
3nē-331113233747596171738397107109131
23nē-2371113192329414367737983101103107
Nr. discr. bē -4c polynomial primes
19.74 = 2 * 37nē+18n+7571319293741434759617173109127131137
2nē-2717233141477173798997103113127137
37nē+3n-737113741475367717383101107127137139149
Nr. discr. bē -4c polynomial primes
20.77 = 7 * 11nē+n-19711131719233741536167717383101113131137139
7nē-7371929313747535983103109113131137139149
11nē-1157111937435379838997107113127131137139
Nr. discr. bē -4c polynomial primes
21.86 = 2 * 43nē+14n-3757111729374143596167718397107139149
2nē-2717233141477173798997103113127137
43nē+12n-7371317194143537197101109131
Nr. discr. bē -4c polynomial primes
22.87 = 3 * 29nē+16n-23313171923293141435971798389101107109113127137
3nē-331113233747596171738397107109131
29nē+n-7571323295359677183103107109139149
Nr. discr. bē -4c polynomial primes
23.91 = 7 * 13nē-38n-335711132941536771738997103113131139
7nē-7371929313747535983103109113131137139149
13nē-1331317232943536179101103107113127131139
Nr. discr. bē -4c polynomial primes
24.93 = 3 * 31nē+5n-17371117192329315367838997103109137
3nē-331113233747596171738397107109131
31nē-12n+5351123314143798397101109113127139149
Nr. discr. bē -4c polynomial primes
25.95 = 5 * 19nē+12n-59571319233137434753596171798397101113149
5nē-5511192931415961717989101109131139149
19nē+8n-335171931596167717379101103107127137149
Nr. discr. bē -4c polynomial primes
26.111 = 3 * 37nē+20n-113511171929313743477173798389103107113
3nē-331113233747596171738397107109131
37nē+3n-737113741475367717383101107127137139149
Nr. discr. bē -4c polynomial primes
27.115 = 5 * 23nē-24n+29351117192329374147537997101113127137
5nē-5511192931415961717989101109131139149
23nē-2371113192329414367737983101103107
Nr. discr. bē -4c polynomial primes
28.118 = 2 * 59nē+22n+3313171923313741475961101103107109137139149
2nē-2717233141477173798997103113127137
59nē+8n-435111723293141434753596783103131137
Nr. discr. bē -4c polynomial primes
29.122 = 2 * 61nē+6n-113112937414347535961677397101103113127137139
2nē-2717233141477173798997103113127137
61nē+7n-3351319414761738397103107109113127131137149
Nr. discr. bē -4c polynomial primes
30.129 = 3 * 43nē+28n+6735132931436771798997103109113127131137139149
3nē-331113233747596171738397107109131
43nē+12n-7371317194143537197101109131
Nr. discr. bē -4c polynomial primes
31.133 = 7 * 19nē-11n-33711131923314143598997103137149
7nē-7371929313747535983103109113131137139149
19nē+8n-335171931596167717379101103107127137149
Nr. discr. bē -4c polynomial primes
32.134 = 2 * 67nē+18n-5357131719315359616773798389101107109131
2nē-2717233141477173798997103113127137
67nē+16n-33711172931374367737989139149
Nr. discr. bē -4c polynomial primes
33.141 = 3 * 47nē+11n-5357112329374147617997103107113137
3nē-331113233747596171738397107109131
47nē-4711171923313743475361678997101107127139149
Nr. discr. bē -4c polynomial primes
34.143 = 11 * 13nē+4n-139111331414347535967717379107109113127131139149
11nē-1157111937435379838997107113127131137139
13nē-1331317232943536179101103107113127131139
Nr. discr. bē -4c polynomial primes
35.145 = 5 * 29nē+12n-10935172937434759717397109113127137139149
5nē-5511192931415961717989101109131139149
29nē+n-7571323295359677183103107109139149
Nr. discr. bē -4c polynomial primes
36.155 = 5 * 31nē-28n+41571113173137414753677379101103107109137139149
5nē-5511192931415961717989101109131139149
31nē-12n+5351123314143798397101109113127139149
Nr. discr. bē -4c polynomial primes
37.159 = 3 * 53nē-28n+3735111319313741475359677997101103107127131137139
3nē-331113233747596171738397107109131
53nē+n-1371113172937434753598997107113131149
Nr. discr. bē -4c polynomial primes
38.161 = 7 * 23nē+16n-9757171923296171838997103127
7nē-7371929313747535983103109113131137139149
23nē-2371113192329414367737983101103107
Nr. discr. bē -4c polynomial primes
39.166 = 2 * 83nē+26n+33511131741475359717983101103113131149
2nē-2717233141477173798997103113127137
83nē-83171929374143476167717983103107109113139
Nr. discr. bē -4c polynomial primes
40.177 = 3 * 59nē+28n+19371119234759798389101113127131139149
3nē-331113233747596171738397107109131
59nē+8n-435111723293141434753596783103131137
Nr. discr. bē -4c polynomial primes
41.183 = 3 * 61nē-28n+13371317293143475361677379838997101107109131139
3nē-331113233747596171738397107109131
61nē+7n-3351319414761738397103107109113127131137149
Nr. discr. bē -4c polynomial primes
42.185 = 5 * 37nē+24n-415111317233741437197101103113139149
5nē-5511192931415961717989101109131139149
37nē+3n-737113741475367717383101107127137139149
Nr. discr. bē -4c polynomial primes
43.201 = 3 * 67nē+28n-53511193741536773101103113127137
3nē-331113233747596171738397107109131
67nē+16n-33711172931374367737989139149
Nr. discr. bē -4c polynomial primes
44.202 = 2 * 101nē-30n+2331117232931475359616771798397101109137139149
2nē-2717233141477173798997103113127137
101nē+3n-2351317192331374347717997101107131137
Nr. discr. bē -4c polynomial primes
45.203 = 7 * 29nē+16n-139711172941435359617379838997101103109127139149
7nē-7371929313747535983103109113131137139149
29nē+n-7571323295359677183103107109139149
Nr. discr. bē -4c polynomial primes
46.206 = 2 * 103nē+26n-3751719313741475359718397101103107109127131137139
2nē-2717233141477173798997103113127137
103nē+20n-33111317293141434761677197103127137149
Nr. discr. bē -4c polynomial primes
47.209 = 11 * 19nē+8n-19351113192329414779107109127137
11nē-1157111937435379838997107113127131137139
19nē+8n-335171931596167717379101103107127137149
Nr. discr. bē -4c polynomial primes
48.213 = 3 * 71nē+11n-23311171923374143475359717379103109113137149
3nē-331113233747596171738397107109131
71nē+16n-7571123293137475967717389101109127139
Nr. discr. bē -4c polynomial primes
49.215 = 5 * 43nē+24n-71519233741434767717383101103107109113127131137
5nē-5511192931415961717989101109131139149
43nē+12n-7371317194143537197101109131
Nr. discr. bē -4c polynomial primes
50.217 = 7 * 31nē+24n-7337131731616771738389107109113139149
7nē-7371929313747535983103109113131137139149
31nē-12n+5351123314143798397101109113127139149
Nr. discr. bē -4c polynomial primes
51.218 = 2 * 109nē-62n+897111319313753596771738997101107109113137139149
2nē-2717233141477173798997103113127137
109nē+9n-7357293143617173838997109113131137
Nr. discr. bē -4c polynomial primes
52.249 = 3 * 83nē+28n-533573137475361718389101107109127137149
3nē-331113233747596171738397107109131
83nē-83171929374143476167717983103107109113139
Nr. discr. bē -4c polynomial primes
53.253 = 11 * 23nē-15n-737111719233143475961717983107109149
11nē-1157111937435379838997107113127131137139
23nē-2371113192329414367737983101103107
Nr. discr. bē -4c polynomial primes
54.259 = 7 * 37nē+32n-3357131723374347536179838997137139149
7nē-7371929313747535983103109113131137139149
37nē+3n-737113741475367717383101107127137139149
Nr. discr. bē -4c polynomial primes
55.262 = 2 * 131nē+30n-373112329313741434759717989103107113127131149
2nē-2717233141477173798997103113127137
131nē+20n-31513192331414753616771798389101103109113127131139
Nr. discr. bē -4c polynomial primes
56.265 = 5 * 53nē+36n+5935112329535967738389103127131137149
5nē-5511192931415961717989101109131139149
53nē+n-1371113172937434753598997107113131149
Nr. discr. bē -4c polynomial primes
57.278 = 2 * 139nē+14n-2291123415361678389101103107109113131137139149
2nē-2717233141477173798997103113127137
139nē+24n+535131923293741435989103113137139
Nr. discr. bē -4c polynomial primes
58.299 = 13 * 23nē+66n-1075132329313743475971798997101103107109137149
13nē-1331317232943536179101103107113127131139
23nē-2371113192329414367737983101103107
Nr. discr. bē -4c polynomial primes
59.301 = 7 * 43nē+15n-1935711192343536167737989107109127131
7nē-7371929313747535983103109113131137139149
43nē+12n-7371317194143537197101109131
Nr. discr. bē -4c polynomial primes
60.303 = 3 * 101nē+32n-47371323293741475367718997101103107113127131139149
3nē-331113233747596171738397107109131
101nē+3n-2351317192331374347717997101107131137
Nr. discr. bē -4c polynomial primes
61.305 = 5 * 61nē-56n+47957171923374143536167109131149
5nē-5511192931415961717989101109131139149
61nē+7n-3351319414761738397103107109113127131137149
Nr. discr. bē -4c polynomial primes
62.309 = 3 * 103nē+32n-5335711131947536171798997101103113139
3nē-331113233747596171738397107109131
103nē+20n-33111317293141434761677197103127137149
Nr. discr. bē -4c polynomial primes
63.314 = 2 * 157nē-38n+4751729314347535961718389107113127131139149
2nē-2717233141477173798997103113127137
157nē+13n+3311131719313747677189101109113127
Nr. discr. bē -4c polynomial primes
64.319 = 11 * 29nē-36n+535711172931414753617383101107139
11nē-1157111937435379838997107113127131137139
29nē+n-7571323295359677183103107109139149
Nr. discr. bē -4c polynomial primes
65.321 = 3 * 107nē+36n+3351317193759617179107113131
3nē-331113233747596171738397107109131
107nē+12n-717132931374143535961677189101103107127131137139149
Nr. discr. bē -4c polynomial primes
66.327 = 3 * 109nē+32n-7131719415361677173798397101103109127131139149
3nē-331113233747596171738397107109131
109nē+9n-7357293143617173838997109113131137
Nr. discr. bē -4c polynomial primes
67.329 = 7 * 47nē-54n-5875713193137414753717379139149
7nē-7371929313747535983103109113131137139149
47nē-4711171923313743475361678997101107127139149
Nr. discr. bē -4c polynomial primes
68.335 = 5 * 67nē+32n-795111323293147536779838997103107113127137139149
5nē-5511192931415961717989101109131139149
67nē+16n-33711172931374367737989139149
Nr. discr. bē -4c polynomial primes
69.341 = 11 * 31nē-19n+55111317293143475961677173798397103113127139
11nē-1157111937435379838997107113127131137139
31nē-12n+5351123314143798397101109113127139149
Nr. discr. bē -4c polynomial primes
70.358 = 2 * 179nē-78n+8937171923374353596771798389103107109127139
2nē-2717233141477173798997103113127137
179nē-28n+1757111317232961717989101103127131149
Nr. discr. bē -4c polynomial primes
71.362 = 2 * 181nē+6n-353195361737983107109131137149
2nē-2717233141477173798997103113127137
181nē+13n-335111329374359677379101137139
Nr. discr. bē -4c polynomial primes
72.371 = 7 * 53nē-40n+2957232937414753596167717379101113127131149
7nē-7371929313747535983103109113131137139149
53nē+n-1371113172937434753598997107113131149
Nr. discr. bē -4c polynomial primes
73.377 = 13 * 29nē+36n-5311131923293137414753738997103107137139
13nē-1331317232943536179101103107113127131139
29nē+n-7571323295359677183103107109139149
Nr. discr. bē -4c polynomial primes
74.381 = 3 * 127nē-40n+193513192329313753596173798389101103127137
3nē-331113233747596171738397107109131
127nē-24n+17371317233741435961677383113127139149
Nr. discr. bē -4c polynomial primes
75.393 = 3 * 131nē+40n+737131723294347617183109131137149
3nē-331113233747596171738397107109131
131nē+20n-31513192331414753616771798389101103109113127131139
Nr. discr. bē -4c polynomial primes
76.398 = 2 * 199nē+2n-39737437189101109127131139149
2nē-2717233141477173798997103113127137
199nē-28n-3351113192953596167718389107127
Nr. discr. bē -4c polynomial primes
77.403 = 13 * 31nē+40n-33713192331374347596771737989101113127137139
13nē-1331317232943536179101103107113127131139
31nē-12n+5351123314143798397101109113127139149
Nr. discr. bē -4c polynomial primes
78.407 = 11 * 37nē-40n-771113172329313753596183103107109127137139
11nē-1157111937435379838997107113127131137139
37nē+3n-737113741475367717383101107127137139149
Nr. discr. bē -4c polynomial primes
79.413 = 7 * 59nē+9n-83713293147535961717379838997101103107127131137
7nē-7371929313747535983103109113131137139149
59nē+8n-435111723293141434753596783103131137
Nr. discr. bē -4c polynomial primes
80.417 = 3 * 139nē+40n-1737131723313753596779101127139149
3nē-331113233747596171738397107109131
139nē+24n+535131923293741435989103113137139
Nr. discr. bē -4c polynomial primes
81.422 = 2 * 211nē+38n-61711192329314359617383107113127137139149
2nē-2717233141477173798997103113127137
211nē+58n-335713233137536773101109113127131137
Nr. discr. bē -4c polynomial primes
82.437 = 19 * 23nē+n-10919233747536773798997101103107109113131139
19nē+8n-335171931596167717379101103107127137149
23nē-2371113192329414367737983101103107
Nr. discr. bē -4c polynomial primes
83.447 = 3 * 149nē+40n-4733741434761737989101107137139149
3nē-331113233747596171738397107109131
149nē+9n-175717192931374753616773103107113127149
Nr. discr. bē -4c polynomial primes
84.473 = 11 * 43nē+28n-277711192329314347535961677397103131149
11nē-1157111937435379838997107113127131137139
43nē+12n-7371317194143537197101109131
Nr. discr. bē -4c polynomial primes
85.481 = 13 * 37nē-44n+3351319313753598997101107109127139
13nē-1331317232943536179101103107113127131139
37nē+3n-737113741475367717383101107127137139149
Nr. discr. bē -4c polynomial primes
86.489 = 3 * 163nē+40n-8935111723294359618997101107137149
3nē-331113233747596171738397107109131
163nē+24n-19371119233141535961677997103107113127139
Nr. discr. bē -4c polynomial primes
87.497 = 7 * 71nē+12n-461713172931374143475961717997107109139
7nē-7371929313747535983103109113131137139149
71nē+16n-7571123293137475967717389101109127139
Nr. discr. bē -4c polynomial primes
88.505 = 5 * 101nē+90n+53571931536771737983101103113127131
5nē-5511192931415961717989101109131139149
101nē+3n-2351317192331374347717997101107131137
Nr. discr. bē -4c polynomial primes
89.515 = 5 * 103nē-94n+149571123293137415361717383103107113149
5nē-5511192931415961717989101109131139149
103nē+20n-33111317293141434761677197103127137149
Nr. discr. bē -4c polynomial primes
90.517 = 11 * 47nē-23n+331113192937414347535971738997103107109127139
11nē-1157111937435379838997107113127131137139
47nē-4711171923313743475361678997101107127139149
Nr. discr. bē -4c polynomial primes
91.526 = 2 * 263nē-186n+23335711172943475371798389101127137
2nē-2717233141477173798997103113127137
263nē+28n-6771317193747596167717989107109127131137139149
Nr. discr. bē -4c polynomial primes
92.535 = 5 * 107nē-48n+413517232931414759617173838997101107113131139149
5nē-5511192931415961717989101109131139149
107nē+12n-717132931374143535961677189101103107127131137139149
Nr. discr. bē -4c polynomial primes
93.537 = 3 * 179nē+40n-13731113192331414353616771113131137139
3nē-331113233747596171738397107109131
179nē-28n+1757111317232961717989101103127131149
Nr. discr. bē -4c polynomial primes
94.542 = 2 * 271nē+38n-1811113172329414767718389101109127139149
2nē-2717233141477173798997103113127137
271nē-66n+535171923374143475359617189107127131
Nr. discr. bē -4c polynomial primes
95.545 = 5 * 109nē+44n-615131723293137475361677189103107109127131
5nē-5511192931415961717989101109131139149
109nē+9n-7357293143617173838997109113131137
Nr. discr. bē -4c polynomial primes
96.566 = 2 * 283nē+46n-375113137414753597379838997109113137149
2nē-2717233141477173798997103113127137
283nē-36n+41313192931414347616773798997101107113131137139
Nr. discr. bē -4c polynomial primes
97.573 = 3 * 191nē+23n-11311132941434753677179838997101103109113131137
3nē-331113233747596171738397107109131
191nē-28n+557111317193147718397109127131139149
Nr. discr. bē -4c polynomial primes
98.597 = 3 * 199nē-52n+79371113173141435961717983101103107113137139149
3nē-331113233747596171738397107109131
199nē-28n-3351113192953596167718389107127
Nr. discr. bē -4c polynomial primes
99.622 = 2 * 311nē-50n+3323293137616771738389101103107113137139149
2nē-2717233141477173798997103113127137
311nē-36n+1351113192331435359717389103109113131137
Nr. discr. bē -4c polynomial primes
100.633 = 3 * 211nē-56n+15131317192329374143737989103109131139149
3nē-331113233747596171738397107109131
211nē+58n-335713233137536773101109113127131137
Nr. discr. bē -4c polynomial primes
101.635 = 5 * 127nē+44n-1515414753596197103107127137139149
5nē-5511192931415961717989101109131139149
127nē-24n+17371317233741435961677383113127139149
Nr. discr. bē -4c polynomial primes
102.649 = 11 * 59nē+48n-7335111343535961717383101109131137149
11nē-1157111937435379838997107113127131137139
59nē+8n-435111723293141434753596783103131137
Nr. discr. bē -4c polynomial primes
103.681 = 3 * 227nē+52n-53571719414373798397103107109137139149
3nē-331113233747596171738397107109131
227nē-2272931536773838997101107109113127
Nr. discr. bē -4c polynomial primes
104.698 = 2 * 349nē+102n-1911113172331414353596173101107131149
2nē-2717233141477173798997103113127137
349nē+19n+33517192329313741677383109139
Nr. discr. bē -4c polynomial primes
105.707 = 7 * 101nē+44n-223711193137414761677389101127131137
7nē-7371929313747535983103109113131137139149
101nē+3n-2351317192331374347717997101107131137
Nr. discr. bē -4c polynomial primes
106.713 = 23 * 31nē+32n-457111723313741434753596171798389101131137
23nē-2371113192329414367737983101103107
31nē-12n+5351123314143798397101109113127139149
Nr. discr. bē -4c polynomial primes
107.717 = 3 * 239nē+23n-473233141475359616789107109127131137149
3nē-331113233747596171738397107109131
239nē-32n+1757171923294347596179101103107109113131139
Nr. discr. bē -4c polynomial primes
108.734 = 2 * 367nē-54n-55294159677173798389103107109113127137
2nē-2717233141477173798997103113127137
367nē+36n-433111319374143536171737989101103113127131137139149
Nr. discr. bē -4c polynomial primes
109.737 = 11 * 67nē+52n-61711132337414347596167717989101103109139
11nē-1157111937435379838997107113127131137139
67nē+16n-33711172931374367737989139149
Nr. discr. bē -4c polynomial primes
110.749 = 7 * 107nē+25n-31571117232931375359737997103107131137139149
7nē-7371929313747535983103109113131137139149
107nē+12n-717132931374143535961677189101103107127131137139149
Nr. discr. bē -4c polynomial primes
111.789 = 3 * 263nē-56n-5351329313741434753596171101103107109113131
3nē-331113233747596171738397107109131
263nē+28n-6771317193747596167717989107109127131137139149
Nr. discr. bē -4c polynomial primes
112.793 = 13 * 61nē-60n+10737111331375961677189103107113127131
13nē-1331317232943536179101103107113127131139
61nē+7n-3351319414761738397103107109113127131137149
Nr. discr. bē -4c polynomial primes
113.794 = 2 * 397nē-58n+47513233147535961737997101109127137139149
2nē-2717233141477173798997103113127137
397nē+21n+11311192329313743476773798397107127131137
Nr. discr. bē -4c polynomial primes
114.813 = 3 * 271nē-29n+73723293137475961677179101103107113131137139149
3nē-331113233747596171738397107109131
271nē-66n+535171923374143475359617189107127131
Nr. discr. bē -4c polynomial primes
115.815 = 5 * 163nē+114n-1151113171931374143475961737983137139
5nē-5511192931415961717989101109131139149
163nē+24n-19371119233141535961677997103107113127139
Nr. discr. bē -4c polynomial primes
116.817 = 19 * 43nē+48n-24131117192329374347718389101113139
19nē+8n-335171931596167717379101103107127137149
43nē+12n-7371317194143537197101109131
Nr. discr. bē -4c polynomial primes
117.838 = 2 * 419nē+58n+33314143535961717397101103107109127131137139
2nē-2717233141477173798997103113127137
419nē-40n-195111319293137416771738397103127137149
Nr. discr. bē -4c polynomial primes
118.865 = 5 * 173nē+114n-21135717293141538997103107109127139149
5nē-5511192931415961717989101109131139149
173nē+n-43132329313741434767738389109113137139149
Nr. discr. bē -4c polynomial primes
119.893 = 19 * 47nē-29n-13713171929314147616783101107109113127131149
19nē+8n-335171931596167717379101103107127137149
47nē-4711171923313743475361678997101107127139149
Nr. discr. bē -4c polynomial primes
120.905 = 5 * 181nē+44n-4215711172329475359798397101103107113127139
5nē-5511192931415961717989101109131139149
181nē+13n-335111329374359677379101137139
Nr. discr. bē -4c polynomial primes
121.913 = 11 * 83nē+60n-1331113192331374359737983101107113139149
11nē-1157111937435379838997107113127131137139
83nē-83171929374143476167717983103107109113139
Nr. discr. bē -4c polynomial primes
122.917 = 7 * 131nē+23n-97711171931434753738397103107109113131139
7nē-7371929313747535983103109113131137139149
131nē+20n-31513192331414753616771798389101103109113127131139
Nr. discr. bē -4c polynomial primes
123.923 = 13 * 71nē-64n+1011319232941718397101127137139149
13nē-1331317232943536179101103107113127131139
71nē+16n-7571123293137475967717389101109127139
Nr. discr. bē -4c polynomial primes
124.955 = 5 * 191nē-126n+1493511192331374353677173103107109113131137139149
5nē-5511192931415961717989101109131139149
191nē-28n+557111317193147718397109127131139149
Nr. discr. bē -4c polynomial primes
125.958 = 2 * 479nē-62n+331113293137475373798997101107127131137139149
2nē-2717233141477173798997103113127137
479nē-44n+55193143475961677379838997109127137
Nr. discr. bē -4c polynomial primes
126.973 = 7 * 139nē+31n-337111719293759616771737997101103107113127137139
7nē-7371929313747535983103109113131137139149
139nē+24n+535131923293741435989103113137139
Nr. discr. bē -4c polynomial primes
127.985 = 5 * 197nē+246n-63135131719294159616773101103109113
5nē-5511192931415961717989101109131139149
197nē+3n-477192329374143475359618397101107109127137
Nr. discr. bē -4c polynomial primes
128.989 = 23 * 43nē+60n-89571319233137414347596189101113127137139149
23nē-2371113192329414367737983101103107
43nē+12n-7371317194143537197101109131
Nr. discr. bē -4c polynomial primes
129.1007 = 19 * 53nē+40n-60717192341535983107109139149
19nē+8n-335171931596167717379101103107127137149
53nē+n-1371113172937434753598997107113131149
Nr. discr. bē -4c polynomial primes
130.1055 = 5 * 211nē+64n-315173143478397101103107109131
5nē-5511192931415961717989101109131139149
211nē+58n-335713233137536773101109113127131137
Nr. discr. bē -4c polynomial primes
131.1133 = 11 * 103nē+13n-241112343597397101103109127137
11nē-1157111937435379838997107113127131137139
103nē+20n-33111317293141434761677197103127137149
Nr. discr. bē -4c polynomial primes
132.1169 = 7 * 167nē-72n+127571113172941597383101103107127131137139
7nē-7371929313747535983103109113131137139149
167nē-1672329435961677179838997103131137139
Nr. discr. bē -4c polynomial primes
133.1253 = 7 * 179nē+23n-1817294143677397103107131149
7nē-7371929313747535983103109113131137139149
179nē-28n+1757111317232961717989101103127131149
Nr. discr. bē -4c polynomial primes
134.1273 = 19 * 67nē+72n+23313171923314147536773798397109113131149
19nē+8n-335171931596167717379101103107127137149
67nē+16n-33711172931374367737989139149
Nr. discr. bē -4c polynomial primes
135.1293 = 3 * 431nē+35n-1731719476171838997101107109113131137139
3nē-331113233747596171738397107109131
431nē-44n+5357293141434753616771798397103107109127131149
Nr. discr. bē -4c polynomial primes
136.1337 = 7 * 191nē+36n-10137192331414347616773798389101107109131139149
7nē-7371929313747535983103109113131137139149
191nē-28n+557111317193147718397109127131139149
Nr. discr. bē -4c polynomial primes
137.1349 = 19 * 71nē-37n+55131931414353596771738397101113127131
19nē+8n-335171931596167717379101103107127137149
71nē+16n-7571123293137475967717389101109127139
Nr. discr. bē -4c polynomial primes
138.1357 = 23 * 59nē-37n+3311232937414359616771838997103109113127139149
23nē-2371113192329414367737983101103107
59nē+8n-435111723293141434753596783103131137
Nr. discr. bē -4c polynomial primes
139.1363 = 29 * 47nē-150n+17332329414753677379107113131137139149
29nē+n-7571323295359677183103107109139149
47nē-4711171923313743475361678997101107127139149
Nr. discr. bē -4c polynomial primes
140.1385 = 5 * 277nē+68n-229517192937414353597173798997103107127131137
5nē-5511192931415961717989101109131139149
277nē+15n-1337131923294147596771798389113131
Nr. discr. bē -4c polynomial primes
141.1389 = 3 * 463nē-37n-53511233141435361677173798397101103107109137
3nē-331113233747596171738397107109131
463nē+86n-3371117192329617173838997107109113127139149
Nr. discr. bē -4c polynomial primes
142.1397 = 11 * 127nē-37n-771129313743477183101103109113127139
11nē-1157111937435379838997107113127131137139
127nē-24n+17371317233741435961677383113127139149
Nr. discr. bē -4c polynomial primes
143.1541 = 23 * 67nē+33n-1135711232943475359616771737997109113127131137
23nē-2371113192329414367737983101103107
67nē+16n-33711172931374367737989139149
Nr. discr. bē -4c polynomial primes
144.1577 = 19 * 83nē-80n+23711131719235361677179838997103107131
19nē+8n-335171931596167717379101103107127137149
83nē-83171929374143476167717983103107109113139
Nr. discr. bē -4c polynomial primes
145.1633 = 23 * 71nē-84n+1313711172329536167717397101113131137149
23nē-2371113192329414367737983101103107
71nē+16n-7571123293137475967717389101109127139
Nr. discr. bē -4c polynomial primes
146.1757 = 7 * 251nē+37n-9771923475961677997113139149
7nē-7371929313747535983103109113131137139149
251nē+32n+551113171941434759717389101107113127139149
Nr. discr. bē -4c polynomial primes
147.1793 = 11 * 163nē-104n+91171113171929475371737997101107109113127139149
11nē-1157111937435379838997107113127131137139
163nē+24n-19371119233141535961677997103107113127139
Nr. discr. bē -4c polynomial primes
148.1837 = 11 * 167nē-43n+33111317314143477379838997101109131137139149
11nē-1157111937435379838997107113127131137139
167nē-1672329435961677179838997103131137139
Nr. discr. bē -4c polynomial primes
149.1839 = 3 * 613nē-88n+97353137475361717997101113127131
3nē-331113233747596171738397107109131
613nē-25n+337171929374143476167718997103131137139149
Nr. discr. bē -4c polynomial primes
150.1865 = 5 * 373nē+68n-7095232931414347535967718997101109113127
5nē-5511192931415961717989101109131139149
373nē+19n-3371317293137415971738389101103107109137
Nr. discr. bē -4c polynomial primes
151.1883 = 7 * 269nē-88n+5371737475371101103107131149
7nē-7371929313747535983103109113131137139149
269nē+15n-1151113233741434753616773798997103127131149
Nr. discr. bē -4c polynomial primes
152.1937 = 13 * 149nē-96n+367111317294153596171838997103107109113127137149
13nē-1331317232943536179101103107113127131139
149nē+9n-175717192931374753616773103107113127149
Nr. discr. bē -4c polynomial primes
153.1943 = 29 * 67nē+84n-179719294147616797101113127131137139149
29nē+n-7571323295359677183103107109139149
67nē+16n-33711172931374367737989139149
Nr. discr. bē -4c polynomial primes
154.1945 = 5 * 389nē+84n-181351119233741434753597983103107
5nē-5511192931415961717989101109131139149
389nē+19n-75711131719415967737997113127137
Nr. discr. bē -4c polynomial primes
155.2049 = 3 * 683nē+88n-1133511171923414761678997103107109113127131149
3nē-331113233747596171738397107109131
683nē+48n-107711232931434753617997101107109131137139
Nr. discr. bē -4c polynomial primes
156.2103 = 3 * 701nē-92n+133135367798397113127131149
3nē-331113233747596171738397107109131
701nē+23n-435713171929314143838997101103131137139
Nr. discr. bē -4c polynomial primes
157.2105 = 5 * 421nē-96n+19951113233137434753737983101109127131137139149
5nē-5511192931415961717989101109131139149
421nē+82n-3357111731677997101103107109113131139149
Nr. discr. bē -4c polynomial primes
158.2119 = 13 * 163nē+92n-3351323374753617173798389103107109113127137139149
13nē-1331317232943536179101103107113127131139
163nē+24n-19371119233141535961677997103107113127139
Nr. discr. bē -4c polynomial primes
159.2177 = 7 * 311nē+60n-1277717193141535961677997101103107109113127131137
7nē-7371929313747535983103109113131137139149
311nē-36n+1351113192331435359717389103109113131137
Nr. discr. bē -4c polynomial primes
160.2189 = 11 * 199nē-47n+551117192331414753738389101103107109127149
11nē-1157111937435379838997107113127131137139
199nē-28n-3351113192953596167718389107127
Nr. discr. bē -4c polynomial primes
161.2229 = 3 * 743nē+92n-11335171929313743598997103107109113127137139149
3nē-331113233747596171738397107109131
743nē-56n+41737415359677997101107109
Nr. discr. bē -4c polynomial primes
162.2305 = 5 * 461nē-96n-1357131937414759618389109127139
5nē-5511192931415961717989101109131139149
461nē+21n-55171923414353596167738997103107109113137139
Nr. discr. bē -4c polynomial primes
163.2321 = 11 * 211nē+96n-175711172937414753596171103113127131137149
11nē-1157111937435379838997107113127131137139
211nē+58n-335713233137536773101109113127131137
Nr. discr. bē -4c polynomial primes
164.2323 = 23 * 101nē-96n-193131923435359617989101107109113127139149
23nē-2371113192329414367737983101103107
101nē+3n-2351317192331374347717997101107131137
Nr. discr. bē -4c polynomial primes
165.2407 = 29 * 83nē+96n-1033112931677173838997101103107109127131137139
29nē+n-7571323295359677183103107109139149
83nē-83171929374143476167717983103107109113139
Nr. discr. bē -4c polynomial primes
166.2413 = 19 * 127nē+49n-33111719294753596167738997109127131149
19nē+8n-335171931596167717379101103107127137149
127nē-24n+17371317233741435961677383113127139149
Nr. discr. bē -4c polynomial primes
167.2497 = 11 * 227nē+60n-1597311131723414753596171838997103107113127149
11nē-1157111937435379838997107113127131137139
227nē-2272931536773838997101107109113127
Nr. discr. bē -4c polynomial primes
168.2537 = 43 * 59nē+76n-109317374143535961737989107113127131139149
43nē+12n-7371317194143537197101109131
59nē+8n-435111723293141434753596783103131137
Nr. discr. bē -4c polynomial primes
169.2573 = 31 * 83nē-51n+7713314143535973798389109113131137139
31nē-12n+5351123314143798397101109113127139149
83nē-83171929374143476167717983103107109113139
Nr. discr. bē -4c polynomial primes
170.2723 = 7 * 389nē+198n-1091719234359617189101107113137
7nē-7371929313747535983103109113131137139149
389nē+19n-75711131719415967737997113127137
Nr. discr. bē -4c polynomial primes
171.2867 = 47 * 61nē-214n-1971929475961717997107127149
47nē-4711171923313743475361678997101107127139149
61nē+7n-3351319414761738397103107109113127131137149
Nr. discr. bē -4c polynomial primes
172.3053 = 43 * 71nē-55n-774361717983101103107109113137149
43nē+12n-7371317194143537197101109131
71nē+16n-7571123293137475967717389101109127139
Nr. discr. bē -4c polynomial primes
173.3057 = 3 * 1019nē-116n+3073193141434753597173798397107109127131
3nē-331113233747596171738397107109131
1019nē-258n+3375717294759677173838997101103107109113131137139149
Nr. discr. bē -4c polynomial primes
174.3065 = 5 * 613nē+108n-14951319232941536171738389107113127131139149
5nē-5511192931415961717989101109131139149
613nē-25n+337171929374143476167718997103131137139149
Nr. discr. bē -4c polynomial primes
175.3097 = 19 * 163nē-120n+503313192931374347596167798389103107109127131
19nē+8n-335171931596167717379101103107127137149
163nē+24n-19371119233141535961677997103107113127139
Nr. discr. bē -4c polynomial primes
176.3113 = 11 * 283nē+92n-99711171923435971798997103107109113131137139149
11nē-1157111937435379838997107113127131137139
283nē-36n+41313192931414347616773798997101107113131137139
Nr. discr. bē -4c polynomial primes
177.3197 = 23 * 139nē+108n-28113171923293141434753617197103109127131139149
23nē-2371113192329414367737983101103107
139nē+24n+535131923293741435989103113137139
Nr. discr. bē -4c polynomial primes
178.3317 = 31 * 107nē-57n-1717193141434773101107127139149
31nē-12n+5351123314143798397101109113127139149
107nē+12n-717132931374143535961677189101103107127131137139149
Nr. discr. bē -4c polynomial primes
179.3377 = 11 * 307nē+100n-8771113293743536171738997103113131139
11nē-1157111937435379838997107113127131137139
307nē+70n-33172331374143475359678997101109113131139149
Nr. discr. bē -4c polynomial primes
180.3401 = 19 * 179nē-238n+5575171937414347536171798397101103109113127139149
19nē+8n-335171931596167717379101103107127137149
179nē-28n+1757111317232961717989101103127131149
Nr. discr. bē -4c polynomial primes
181.3737 = 37 * 101nē+84n-197329374759617189101103107109113137
37nē+3n-737113741475367717383101107127137139149
101nē+3n-2351317192331374347717997101107131137
Nr. discr. bē -4c polynomial primes
182.3743 = 19 * 197nē-124n+101111319596189101107113127131137139
19nē+8n-335171931596167717379101103107127137149
197nē+3n-477192329374143475359618397101107109127137
Nr. discr. bē -4c polynomial primes
183.3841 = 23 * 167nē-124n+3351723293137434753677983103109113127149
23nē-2371113192329414367737983101103107
167nē-1672329435961677179838997103131137139
Nr. discr. bē -4c polynomial primes
184.4103 = 11 * 373nē-128n-771123374761678389107137149
11nē-1157111937435379838997107113127131137139
373nē+19n-3371317293137415971738389101103107109137
Nr. discr. bē -4c polynomial primes
185.4121 = 13 * 317nē+116n-75751319234143475361717997101103109113131137
13nē-1331317232943536179101103107113127131139
317nē+13n-37711233137435359616773798389101103113131149
Nr. discr. bē -4c polynomial primes
186.4213 = 11 * 383nē-65n+3311132331416167717983103107109113127131137
11nē-1157111937435379838997107113127131137139
383nē+32n-1271117294759737983101107113127131137149
Nr. discr. bē -4c polynomial primes
187.4313 = 19 * 227nē-140n+58771113192331374143476773101107127131139
19nē+8n-335171931596167717379101103107127137149
227nē-2272931536773838997101107109113127
Nr. discr. bē -4c polynomial primes
188.4393 = 23 * 191nē-270n+6533711131923375359618389113137
23nē-2371113192329414367737983101103107
191nē-28n+557111317193147718397109127131139149
Nr. discr. bē -4c polynomial primes
189.4601 = 43 * 107nē+136n+23571113234143475371737983101107113131
43nē+12n-7371317194143537197101109131
107nē+12n-717132931374143535961677189101103107127131137139149
Nr. discr. bē -4c polynomial primes
190.4619 = 31 * 149nē-136n+551331597189113127131137149
31nē-12n+5351123314143798397101109113127139149
149nē+9n-175717192931374753616773103107113127149
Nr. discr. bē -4c polynomial primes
191.5029 = 47 * 107nē-71n+3353137434753616773798389101107109113127139149
47nē-4711171923313743475361678997101107127139149
107nē+12n-717132931374143535961677189101103107127131137139149
Nr. discr. bē -4c polynomial primes
192.5753 = 11 * 523nē-156n+331112331536171798389101127137139
11nē-1157111937435379838997107113127131137139
523nē-48n+533131729414753596773798389103109127137139149
Nr. discr. bē -4c polynomial primes
193.6233 = 23 * 271nē-172n+1163192331414397107109113137139149
23nē-2371113192329414367737983101103107
271nē-66n+535171923374143475359617189107127131
Nr. discr. bē -4c polynomial primes
194.6313 = 59 * 107nē-156n-22931929314143535967737997103107109113131137
59nē+8n-435111723293141434753596783103131137
107nē+12n-717132931374143535961677189101103107127131137139149
Nr. discr. bē -4c polynomial primes
195.6533 = 47 * 139nē-164n+191719233743477173798389109131139
47nē-4711171923313743475361678997101107127139149
139nē+24n+535131923293741435989103113137139
Nr. discr. bē -4c polynomial primes
196.6541 = 31 * 211nē-81n+53517192329314759617189101103107109113127
31nē-12n+5351123314143798397101109113127139149
211nē+58n-335713233137536773101109113127131137
Nr. discr. bē -4c polynomial primes
197.6593 = 19 * 347nē+156n-50911193741436173798397103131137149
19nē+8n-335171931596167717379101103107127137149
347nē+36n-23713192329475361737989103109113137139149
Nr. discr. bē -4c polynomial primes
198.6697 = 37 * 181nē-168n+35931117192331376167738997101103109113131137139
37nē+3n-737113741475367717383101107127137139149
181nē+13n-335111329374359677379101137139
Nr. discr. bē -4c polynomial primes
199.7061 = 23 * 307nē+164n-3375234143616771101127137
23nē-2371113192329414367737983101103107
307nē+70n-33172331374143475359678997101109113131139149
Nr. discr. bē -4c polynomial primes
200.7153 = 23 * 311nē-180n+94731113171923374347617397103127139149
23nē-2371113192329414367737983101103107
311nē-36n+1351113192331435359717389103109113131137
Nr. discr. bē -4c polynomial primes
201.7313 = 71 * 103nē-180n+78711192931475367717983103107113127131
71nē+16n-7571123293137475967717389101109127139
103nē+20n-33111317293141434761677197103127137149
Nr. discr. bē -4c polynomial primes
202.7747 = 61 * 127nē-176n-33111329314153617173798389101113127149
61nē+7n-3351319414761738397103107109113127131137149
127nē-24n+17371317233741435961677383113127139149
Nr. discr. bē -4c polynomial primes
203.8153 = 31 * 263nē+160n-17532931537379103109127139149
31nē-12n+5351123314143798397101109113127139149
263nē+28n-6771317193747596167717989107109127131137139149
Nr. discr. bē -4c polynomial primes
204.8639 = 53 * 163nē-188n+1975711535971738397101107109113137
53nē+n-1371113172937434753598997107113131149
163nē+24n-19371119233141535961677997103107113127139
Nr. discr. bē -4c polynomial primes
205.8777 = 67 * 131nē-176n-1033315967798997107131137139
67nē+16n-33711172931374367737989139149
131nē+20n-31513192331414753616771798389101103109113127131139
Nr. discr. bē -4c polynomial primes
206.9353 = 47 * 199nē+176n-1609711194147536167737989103107109113127131137
47nē-4711171923313743475361678997101107127139149
199nē-28n-3351113192953596167718389107127
Nr. discr. bē -4c polynomial primes
207.9617 = 59 * 163nē-212n+1619111323313741535967717389101103109149
59nē+8n-435111723293141434753596783103131137
163nē+24n-19371119233141535961677997103107113127139
Nr. discr. bē -4c polynomial primes
208.9665 = 5 * 1933nē+184n-120151759616771838997101107109113127131149
5nē-5511192931415961717989101109131139149
1933nē+45n+23371323374347535961717389101103109131137149
Nr. discr. bē -4c polynomial primes
209.9953 = 37 * 269nē-208n+863111719293137414753596773109113127149
37nē+3n-737113741475367717383101107127137139149
269nē+15n-1151113233741434753616773798997103127131149
Nr. discr. bē -4c polynomial primes
210.12017 = 61 * 197nē+204n-161311171931414761677179838997107109127137139
61nē+7n-3351319414761738397103107109113127131137149
197nē+3n-477192329374143475359618397101107109127137
Nr. discr. bē -4c polynomial primes
211.12977 = 19 * 683nē-232n+479131931374161798389101107113137
19nē+8n-335171931596167717379101103107127137149
683nē+48n-107711232931434753617997101107109131137139
Nr. discr. bē -4c polynomial primes
212.13301 = 47 * 283nē-115n-19571931434759616771838997101103107109139
47nē-4711171923313743475361678997101107127139149
283nē-36n+41313192931414347616773798997101107113131137139
Nr. discr. bē -4c polynomial primes
213.14137 = 67 * 211nē-240n+26337193137414759616771738397103107
67nē+16n-33711172931374367737989139149
211nē+58n-335713233137536773101109113127131137
Nr. discr. bē -4c polynomial primes
214.14857 = 83 * 179nē-252n+101931729315359617173798397103137
83nē-83171929374143476167717983103107109113139
179nē-28n+1757111317232961717989101103127131149
Nr. discr. bē -4c polynomial primes
215.16697 = 59 * 283nē+248n-13217293137414347596771109127131137149
59nē+8n-435111723293141434753596783103131137
283nē-36n+41313192931414347616773798997101107113131137139
Nr. discr. bē -4c polynomial primes
216.17993 = 19 * 947nē-280n+160713192937596771738397113131149
19nē+8n-335171931596167717379101103107127137149
947nē+52n-2717111923414347535967717389109139149
Nr. discr. bē -4c polynomial primes
217.20473 = 59 * 347nē-288n+26332329374753597197101103107127137
59nē+8n-435111723293141434753596783103131137
347nē+36n-23713192329475361737989103109113137139149
Nr. discr. bē -4c polynomial primes
218.21653 = 59 * 367nē+292n-3377114143535997103107109131137
59nē+8n-435111723293141434753596783103131137
367nē+36n-433111319374143536171737989101103113127131137139149
Nr. discr. bē -4c polynomial primes
219.23437 = 23 * 1019nē+153n-737232931375361677383101103107127
23nē-2371113192329414367737983101103107
1019nē-258n+3375717294759677173838997101103107109113131137139149
Nr. discr. bē -4c polynomial primes
220.26549 = 139 * 191nē-163n+5513195361677379101107139
139nē+24n+535131923293741435989103113137139
191nē-28n+557111317193147718397109127131139149